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Error analysis of Euler’s, Heun’s and
the 4th-order Runge-Kutta method

Introduction

• In this topic, we will

– Calculate y(2)(t) given y(1)(t) = f (t, y(t))

– Describe the Lipschitz constant

– Consider the worst-case scenario for solving an initial-
value problem (IVP)

– Comment on defining error for IVPs

– Look at how we can estimate the error of Euler’s, Heun’s
and the 4th-order Runge-Kutta method

– Discuss issues with this approach
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Initial-value problem solvers

• Our error analysis showed that for each step of these techniques,
the error was O(hN) for a single step,

but for multiple steps, it was O(hN–1)

– This was based on a similar analysis we saw for integration

• Problem:
With integration, we could assume each value was exact

• With IVP solvers,
all but once, we estimate yk+1 using a previous estimate

Euler's method

3

Euler’s method

• Fortunately, the error is never-the-less proportional to hN–1,
but, the coefficient may be slightly larger than expected

• We will do a slightly deeper dive on Euler’s method

– First: the error depends on y(2)(t), but can we estimate this?

– Recall that  

– Thus

Euler's method
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Euler’s method

• Let’s look at our two examples

– Given

– Given 

Euler's method
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( )( ) ( )1
y t y t= −

( )( ) ( )1
0.2 sin( ) 0.1y t y t t= − − −

( ) ( ) ( ) ( )( )2
0 1y t y t= + − −

( )y t=

( ) ( ) ( ) ( ) ( ) ( )( )2
cos 0.2 0.2 sin 0.1y t t y t t= − + − − − −

( ) ( ) ( )cos 0.04 0.2sin 0.02t y t t= − + + +

Lipschitz constant

Euler's method

• A function f on a domain [t0, tf] × [yL, yU] is said to satisfy a 
Lipschitz condition if 

– For example, given

– For example, given 
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Euler’s method

• You can therefore show the error may be larger than expected:

Euler's method
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A comment on error

• With previous algorithms,
we required successive approximations to be within eabs

– Previous problems have included:

• Convergence of the root finding algorithms

• Approximating a solution to an IVP is an open-ended problem

– We may not know at which point we wish to stop

– Thus, we will use the maximum absolute error per unit time

– Given an IVP and we want to approximate a solution at tf,
we will expect the error to be less than eabs(tf – t0)

Euler's method
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Is our approximation good enough?

• Question: With Euler’s method, how large should h be?

– Consider the following strategy:

• Choose an n and find yn which approximates y(tf)

• Repeat this process but now use 2n intervals

– Let these approximations be denoted zk so that z2n also
approximates y(tf)

Euler's method
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Is our approximation good enough?

• Thus, we have two approximations of y(tf):

– Thus, we have

– Therefore, the error of z2n is approximately 

Euler's method
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Is our approximation good enough?

• Thus, by subtracting the worse approximation from the better 
approximation, we have an approximation of the error of z2n

– Not only that, but we can do one better:

– Thus, having calculated yn and z2n,
we can find an even better approximation of y(tf)

– This weighted average is an O(h2) approximation!

Euler's method
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( ) 2 2f n n ny t z z y−  −

( ) 22f n ny t z y −

Is our approximation good enough?

• Consequently, given our two approximations

– The difference between the last two is an approximation of the 
error of the last z2n

– Also, for each yk we have that y(tk), 2z2k – yk is a better 
approximation of y(tk)

Euler's method
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Is our approximation good enough?

• Thus, suppose we want our approximation to y(tf) to be no larger 
than eabs(tf – t0)

– Thus, we will do the following:

• Choose an n and calculate the approximations y1, …, yn

• With 2n intervals, calculate the approximations z1, …, z2n

• Recall that |yn – z2n| is only an estimate of the error

• To be safe, check if 2|yn – z2n| < eabs(tf – t0)

– If this is true, we are finished and approximate y(tk) with the
n values y(tk) ≈ 2z2k – yk

– Otherwise, repeat this process again but now with 4n intervals

• Because these techniques require us to approximate solutions 
with n, then 2n and possibly 4n, 8n, etc. intervals, we will call 
these approaches iterative solvers

Euler's method
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Is our approximation good enough?

• We can do this with Heun and RK4

Euler's method
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Issues

• This approach, however, does have its drawbacks:

– It’s expensive: we are making a minimum of 3n approximations

– Even if the approximation at y(tf) is sufficiently accurate,

this does not mean that each point is sufficiently accurate…

– Also, suppose the solution is smooth at some points, and variable at 

others

• Where the solution is smooth, we can get away with a larger step size

• Where the solution varies, we probably require a smaller step size

– This approach, however, requires us to use that smaller step size 

everywhere

Euler's method
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Adaptive techniques

• We will, instead, look at adaptive techniques that allow us to 
dynamically vary the step size

– Question: How can we estimate the error if we don’t know what the 

solution actually is?

Euler's method
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Summary

• Following this topic, you now

– Understand how to get y(2)(t) given y(1)(t) = f(t, y(t))

– Are aware that the error may be more significant

• You are not required to master this in this course

• You must simply be aware of the issue,
many of you will never come across this issue

– Understand we will define the maximum absolute error in terms
of an acceptable error eabs per unit time

• Because |yn – z2n| only approximates the error, we’ll double it

– Know how to iteratively estimate the error with Euler’s, Heun’s
and the 4th-order Runge-Kutta method

– Know how to get an even better approximation using two less-
optimal approximations

– Understand that there are issues with this approach

Euler's method
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Colophon 

These slides were prepared using the Cambria typeface. Mathematical equations 
use Times New Roman, and source code is presented using Consolas.  
Mathematical equations are prepared in MathType by Design Science, Inc.

Examples may be formulated and checked using Maple by Maplesoft, Inc.

The photographs of flowers and a monarch butter appearing on the title slide and 
accenting the top of each other slide were taken at the Royal Botanical Gardens in 
October of 2017 by Douglas Wilhelm Harder. Please see

https://www.rbg.ca/

for more information.
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Disclaimer

These slides are provided for the ECE 204 Numerical methods
course taught at the University of Waterloo. The material in it
reflects the author’s best judgment in light of the information
available to them at the time of preparation. Any reliance on these
course slides by any party for any other purpose are the
responsibility of such parties. The authors accept no responsibility
for damages, if any, suffered by any party as a result of decisions
made or actions based on these course slides for any other purpose
than that for which it was intended.
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